Dos investigadores de la Escuela de Ingenierías Industriales desarrollan un novedoso método de optimización para el diseño computacional de aplicaciones industriales
El estudio realizado por los investigadores, Joaquín Ortega y Francisco Javier Granados, ha sido publicado en la revista científica ‘Physics of Fluids’ como ‘Editor’s Pick’ –publicación destacada por parte del editor-.
En el campo de la Ingeniería Industrial el uso de simulaciones para modelar, predecir e, incluso, optimizar la respuesta de un sistema o dispositivo está muy extendido, puesto que resulta más económico y menos complejo -y, a veces, menos peligroso- que construir varios prototipos y testarlos.
Para este tipo de estudios de simulación se utilizan métodos numéricos que, dependiendo del problema a tratar -por ejemplo, disminuir las fuerzas aerodinámicas de un avión cambiando su forma o usar el mínimo material posible en un elemento sometido a cargas sin que se rompa-, requieren simular una elevada variedad de posibles casos combinacionales, lo que implica costes computacionales muy elevados.
Los investigadores de la Escuela de Ingenierías Industriales de la Universidad de Málaga Francisco Javier Granados Ortiz y Joaquín Ortega Casanova han dado un paso más con el desarrollo de un novedoso método de optimización por diseño computacional que, mediante el uso de inteligencia artificial, disminuye estos costes de simulación.
Referencia bibliográfica:
Granados Ortiz, F.J. y Ortega-Casanova, J. (2021) Machine learning-aided design optimisation of a mechanical micromixer. Physics of Fluids; (33): 063604 https://doi.org/10.1063/5.0048771
Más información: Sala de prensa de la UMA